Uneva+
External connection implant
EXTERNAL CONNECTION
IMPLANT

INDICATIONS
- All bone densities and particularly high densities
- Direct bars on implants

CHARACTERISTICS
- Cylindrical implant
- Bone level
- Ø 3.6 - 4.1 - 4.8 mm
- Lg 6 - 8 - 10 - 12 - 14 mm

Short implant
6 mm
... TO OPTIMISE ANCHORAGE AND
Synchronous microthread with the main thread
- Insertion with no tearing of the cortical bone
- Stabilization of the cortical bone
- Optimization of the primary anchorage

Asymmetrical thread
- Homogeneous distribution of masticatory forces
- Excellent primary stability right from the placement of the implant (cf bibliographic reference 1 on page 12)

Double thread
- Reduced bone heat-up and insertion time

Central protrusion between the screw threads
- Increases the surface in contact with bone tissues by 15%
- Facilitates osteogenesis
- Activates cellular reconstruction (cf bibliographic references 2 and 3 on page 12)

Bone level
- Better visibility and accessibility with the probe

Engaging and atraumatic apex
- Departure of the screw threads from the apex for high self-tapping capacity of the implant
- Safe use in the sub-sinus area

Proven STAE® surface treatment
- Micro sandblasting with titanium oxide and etching with nitric and hydrofluoric acids (cf studies 1, 2 and 3 on page 11)
- 25 years of clinical experience
RELIABLE CONNECTION

HEXAGONAL EXTERNAL CONNECTION

Platform B is equivalent to platform A and enables use of the prosthetic elements of NP and RP platforms in order to obtain a "Platform Switching" assembly.

On 4.8 diameter implants, a conical shoulder allows for an increase in the height of the connection and engagement of the abutment, which gives it greater stability.

- Better stress distribution
- Centering of the prosthetic part
- Guaranteed sealing of the prosthetic seal
EMERGENCE PROFILE MANAGEMENT

The iphysio® patented concept, which offers a simplified protocol that is quicker and more comfortable for the patient, allows you to maintain an identical anatomic emergence profile from the healing phase to the completion of the final prosthesis.

2 in 1 = a single part for healing and impression

Healing of soft tissues according to the anatomy of the tooth to be replaced

Traditional or digital impression directly on the cap

No damage to the mucosal attachment
Time-saving

Anatomical = 9 shapes for preparing a natural and aesthetic emergence profile

<table>
<thead>
<tr>
<th>Incisors and canines</th>
<th>Premolars</th>
<th>Molars</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

3 profiles

3 heights

1, 2 or 4 mm
... FOR THE OPTIMISATION OF ALL

PRECAST ABUTMENTS

Single prosthesis

Cemented

Screwed

Trans-screwed abutments straight and angulated

Tetra abutments straight

Castable abutments gold base

Esthetibase interfaces anti-rotational

Direct Clip abutments

Plural prosthesis

Cemented

Screwed

Trans-screwed abutments straight and angulated

Tetra abutments straight

Castable abutments gold base

Direct Clip abutments

Emergence switching

- Acts as a developing chamber of the connective tissue.
- Protects the biological seal.
- Improves the support of soft tissues.
- Locates gingival inflammation away from the crestal bone.

Inflammatory area away from the bone

Healthy gums facing the bone
YOUR PROSTHETIC WORKS

Removable prosthesis
On attachments
Tetra abutments straight and angulated 17° and 30°
Esthetibase interfaces rotational

O’Ring abutments
Locator® abutments

ALL® system
Immediate loading solution for making a final bridge in 6 hours on the day when the implants are positioned.
The winged sleeves are mounted on the straight and angulated Tetra abutments.

CAD-CAM
Customized abutments titanium

Customized abutments zirconia and e-max on Esthetibase interfaces

Trans-screwed monolithic crowns on Esthetibase interfaces

Trans-screwed bridges directly on implants or on abutments

Simple and anatomic bars

Non-contractual photos
SAFETY AND SIMPLICITY

Removable and sterilizable drilling stops
- Secure drilling depth = optimization of the anchorage depth of the implant
- Perfectly calibrated site preparation
- Do not hide visibility

Differentiated protocols
By bone density and implant diameter, thus allowing for a calibration of the implant socket that ensures:
- Good primary stability of the implant, which is an essential condition for osseointegration
- Minimum heating in order to avoid any irreversible bone necrosis

Direct placement of the implant on the mandrel
- Saves time during surgery
- Good visibility of the level of positioning and orientation of the connection
- Informed supra-implant height
QUALITY GUARANTEE

Thanks to its 100% integrated French design and production etk ensures the total control of the processes, materials used, and production conditions (respect for asepsis and the environment).

etk guarantee*

• Implants: lifetime guarantee
• Prosthetic parts: 10-year guarantee

* The guarantee only applies subject to the exclusive use of the components etk during all stages of treatment (surgery, healing, impression and prosthesis) and only if all application conditions are met.

Clinical studies

1. Histology and histomorphometry – Comparative study
 Karl Donath Laboratories, Hamburg (Germany) – Laboratory of Histology, Angers (France)

2. Quantitative study of the roughness of the titanium base surface of dental implants and their microstructures
 Henri Poincaré University (Nancy, France)

3. Analysis of the cleanliness of the surface conditions of implants etk and competitors
 CSIC (Superior Council of Scientific Research) – University of Barcelona (Spain)
Bibliographic references

(1) The effect of thread pattern upon implant osseointegration
Heba Abuhussein, Giorgio Pagni, Hom-Lay Wang - Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
Alberto Rebaudi - Department of Biophisical, Medical and Dental Science & Technology, University of Genoa, Italy.

(2) Effect of a macroscopic groove on bone response and implant stability
Yoon HI, Yeo IS, Yang JH - Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea.

(3) Cell orientation and cytoskeleton organisation on ground titanium surfaces
Eisenbarth E, Linez P, Siehl V, Velten D, Breme J, Hildebrand HF - Lehrstuhl für metallische Werkstoffe, Universität des Saarlandes, D 66041 Saarbrücken, Germany.